Structure of 6-Nitro-4-phenyl-1,2-dihydroquinazoline

By Alan T. Johnson, Douglas A. Keszler, Kazuhiko Sakuma and James D. White
Department of Chemistry, Oregon State University, Gilbert Hall 153, Corvallis, Oregon 97331-4003, USA

(Received 27 September 1988; accepted 3 February 1989)

Abstract. $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}, \quad M_{r}=253.26$, monoclinic, $P 2_{1} / n, \quad a=5.9155$ (6), $\quad b=10 \cdot 132$ (2),$\quad c=$ 19.252(5) $\AA, \quad \beta=94.09(1)^{\circ}, \quad V=1150.9(4) \AA^{3}, \quad Z=$ 4, $D_{x}=1.46 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71069 \AA, \quad \mu=$ $0.109 \mathrm{~mm}^{-1}, F(000)=528, T=296 \mathrm{~K}, R=0.052$ for 1210 observed unique reflections. The phenyl group is tilted at an angle of $55.8(7)^{\circ}$ with respect to the quinazoline system.

Experimental. The title compound was prepared in the course of a program directed toward the synthesis of new heterocyclic systems for pharmacological evaluation. Its preparation entails condensation of 2 -amino-5-nitrobenzophenone with hexamethylenetetramine in the presence of ethyl bromoacetate (Blazevic, Kolbah, Belin, Sunjic \& Kajfez, 1979). Yellow crystal of dimensions $0.15 \times 0.25 \times 0.50 \mathrm{~mm}, D_{m}$ not measured. Rigaku AFC-6R diffractometer with graphite monochromator. Lattice parameters determined using 18 centered reflections within $33.2 \leq 2 \theta \leq 43.8^{\circ}$. Absorption ignored; $(\sin \theta / \lambda)_{\max }=0.596 \AA^{-1}$, range of $h k l: 0 \leq h \leq 7,0 \leq k \leq 11,-22 \leq l \leq 22$. Three standard reflections monitored every 150 reflections with an average change in intensity of 0.5% over data collection, $\omega-2 \theta$ scans of $16.0^{\circ} \mathrm{min}^{-1}$ in $\omega, 2438$ unique reflections, 1210 observed $\left[F_{o}{ }^{2}>3 \sigma\left(F_{o}\right)^{2}\right]$.

Table 1. Positional parameters and equivalent isotropic temperature factors

$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} a_{i}^{*} a_{j}^{*} \mathrm{a}_{i} \cdot \mathbf{a}_{j} U_{i j}$.			
x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
0.8826 (5)	$0 \cdot 1986$ (3)	0.4651 (2)	$4 \cdot 7$ (2)
0.8027 (5)	-0.0042 (3)	0.4394 (2)	$4 \cdot 7$ (2)
1.6387 (6)	0.0763 (3)	0.2655 (2)	$3 \cdot 6$ (2)
1.7231 (5)	0.3096 (3)	0.2872 (2)	3.0 (1)
0.9201 (6)	0.0949 (4)	0.4351 (2)	$3 \cdot 5$ (2)
1.7568 (8)	$0 \cdot 1932$ (4)	0.2458 (2)	$3 \cdot 6$ (2)
1.5630 (6)	0.3121 (4)	0.3289 (2)	2.4 (2)
1.4115 (6)	0.2004 (4)	0.3390 (2)	2.4 (2)
1.2363 (6)	$0 \cdot 2015$ (4)	0.3827 (2)	2.7 (2)
$1 \cdot 1100$ (6)	0.0904 (4)	$0 \cdot 3915$ (2)	2.8 (2)
$1 \cdot 1589$ (7)	-0.0273 (4)	0.3592 (2)	3.5 (2)
1.3351 (7)	-0.0326 (4)	0.3174 (2)	3.4 (2)
1.4642 (6)	0.0807 (4)	0.3056 (2)	2.7 (2)
1.5391 (6)	0.4372 (4)	0.3678 (2)	2.4 (2)
1.7227 (6)	0.4889 (4)	0.4077 (2)	3.0 (2)
1.7075 (7)	0.6078 (5)	0.4418 (2)	3.7 (2)
1.5067 (8)	0.6770 (4)	0.4377 (2)	$4 \cdot 1$ (2)
1.3226 (7)	0.6262 (4)	0.3989 (2)	3.8 (2)
$1 \cdot 3378$ (6)	$0 \cdot 5073$ (4)	0.3646 (2)	$3 \cdot 2$ (2)

0108-2701/89/071114-02\$03.00

Structure solved by direct methods with MITHRIL (Gilmore, 1983), DIRDIF (Beurskens, 1984) and analysis of successive electron density maps. H atoms located in difference maps; constrained to idealized positions with isotropic $B=1.2 \times B$ of bonded atom. $\sum w\left(F_{o}-F_{c}\right)^{2} \quad$ minimized where $\quad w=1 / \sigma^{2}\left(F_{o}\right) . \quad 172$ parameters refined: atom coordinates, anisotropic temperature factors for all non-H atoms, $(\Delta / \sigma)_{\text {max }}$ $=0.00, \quad R=0.052, \quad w R=0.074, \quad S=1.92$. Final difference electron density excursions -0.21 and $0.30 \mathrm{e}^{\AA^{-3}}$. Atomic scattering factors from International Tables for X-ray Crystallography (1974) and programs used were those from the TEXRAY Crystallographic Software Package (Molecular Structure Corporation, 1985). Atom numbering for Tables 1 and 2, atom coordinates and bond distances and bond angles, follows that shown in Fig. 1.* Our primary

[^0]Table 2. Bond distances (\AA) and bond angles $\left({ }^{(}\right)$

O1-N3	$1.226(4)$	C4-C5	$1.368(5)$
O2-N3	$1.227(4)$	C5-C6	$1.385(6)$
N1-C8	$1.333(5)$	C6-C7	$1.363(6)$
N1-C1	$1.440(5)$	C7-C8	$1.405(5)$
N2-C2	$1.284(4)$	C9-C10	$1.387(5)$
N2-C1	$1.446(5)$	C9-C14	$1.385(5)$
N3-C5	$1.449(5)$	C10-C11	$1.378(6)$
C2-C3	$1.465(5)$	C11-C12	$1.377(6)$
C2-C9	$1.484(5)$	C12-C13	$1.376(6)$
C3-C4	$1.381(5)$	C13-C14	$1.379(6)$
C3-C8	$1.418(5)$		
C8-N1-C1	$122.4(3)$	C6-C5-N3	$118.9(4)$
C2-N2-C1	$119.8(3)$	C7-C6-C5	$119.5(4)$
O1-N3-O2	$123.1(3)$	C6-C7-C8	$120.7(4)$
O1-N3-C5	$118.3(4)$	N1-C8-C7	$121.2(4)$
O2-N3-C5	$118.6(4)$	N1-C8-C3	$119.7(3)$
N1-C1-N2	$115.8(3)$	C7-C8-C3	$119.0(3)$
N2-C2-C3	$123.6(3)$	C14-C9-C10	$117.9(4)$
N2-C2-C9	$115.6(3)$	C14-C9-C2	$121.8(3)$
C3-C2-C9	$120.7(3)$	C10-C9-C2	$120.2(3)$
C4-C3-C8	$118.8(3)$	C11-C10-C9	$121.3(4)$
C4-C3-C2	$124.6(3)$	C12-C11-C10	$120 \cdot 2(4)$
C8-C3-C2	$116.4(3)$	C11-C12-C13	$119.1(4)$
C5-C4-C3	$120.6(3)$	C12-C13-C14	$120.7(4)$
C4-C5-C6	$121.3(3)$	C13-C14-C9	$120.8(4)$
C4-C5-N3	$119.9(4)$		

© 1989 International Union of Crystallography

Fig. 1. ORTEP (Johnson, 1965) diagram of the molecule with thermal ellipsoids scaled at the 50% probability level.
purpose in elucidating the crystal structure (Figs. 1 and 2) of this compound was to determine whether the phenyl substituent is coplanar with the quinazoline nucleus. As can be seen from Fig. 1, the torsional angle $\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 9-\mathrm{C} 10$ is $55.8(7)^{\circ}$, a rotation of the phenyl group that effectively takes it out of conjugation with the quinazoline system.

Related literature. In the crystal structure of the related compound 6-isopropyl-2,4-diphenylquinazoline (Hunter, Neilson \& Weakley, 1985), the plane containing the C4-phenyl group is rotated by 63.9° with respect to the quinazoline ring system.

Financial support for this work was provided by the Purdue Frederick Company. The X-ray diffractometer was purchased with funds provided by the National Science Foundation (CHE-8604239) and by the donors

Fig. 2. Packing diagram for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}$.
of the Foursight! program administered by the Oregon State University Foundation.

References

BeURSKEns, P. T. (1984). DIRDIF. Direct Methods for Difference Structures. An Automatic Procedure for Phase Extension and Refinement of Difference Structure Factors. Tech. Rep. 1. Crystallography Laboratory, Toernooiveld, 6525 ED Nijmegen, The Netherlands.
Blazevic, N., Kolbah, D., Belin, B., Sunjic, V. \& Kajfez, F. (1979). Synthesis, pp. 161-176.

Gilmore, G. J. (1983). MITHRIL. A Computer Program for the Automatic Solution of Crystal Structures from X-ray Data. Univ. of Glasgow, Scotland.
Hunter, D., Nellson, D. G. \& Weakley, T. J. R. (1985). J. Chem. Soc. Perkin Trans. 1, p. 2709.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1985). TEXSAN Structure Analysis Package. MSC, 3200A Research Forest Drive, The Woodlands, Texas 77381, USA.

Acta Cryst. (1989). C45, 1115-1116

3-Methyl-2,2,4,6-tetraphenyl-2,3-dihydro-1,3,5-triazine

By Yukie Mori, Yuji Ohashi and Koko Maeda*
Department of Chemistry, Faculty of Science, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112, Japan

(Received 8 December 1988; accepted 6 February 1989)

Abstract. $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{3}, M_{r}=401 \cdot 5$, orthorhombic, $P b c a$, $a=32 \cdot 219$ (2), $\quad b=7.3562$ (4), $\quad c=18.390$ (2) \AA, $\quad V$ $=4358.6(5) \AA^{3}, Z=8, D_{x}=1.224 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Cu} K \alpha)$ $=1.54184 \AA, \quad \mu=4.86 \mathrm{~cm}^{-1}, \quad F(000)=1696, \quad T=$ $293 \mathrm{~K}, R=0.060$ for 2691 unique observed reflections. In comparison with 2,2,4,6-tetraphenyl-2,3-di-hydro-1,3,5-triazine $N(3)-C(2)$ is lengthened by $0.035(6) \AA$ and the phenyl ring at the 4 -position is

[^1]0108-2701/89/071115-02\$03.00
rotated out of the plane composed of $\mathrm{N}(1), \mathrm{N}(3), \mathrm{C}(4)$, $N(5)$ and $C(6)$ by the introduction of a methyl group at the 3-position.

Experimental. The title compound was prepared from 2,2,4,6-tetraphenyl-2,3-dihydro-1,3,5-triazine (Maeda, Kihara \& Ishimura, 1985). Recrystallization from benzene-hexane gave colorless column-like crystals; crystal dimensions $0.2 \times 0.15 \times 0.25 \mathrm{~mm}$, Rigaku AFC-4 diffractometer, $\mathrm{Cu} K \alpha$ radiation, graphite © 1989 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51763 (13 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * To whom correspondence should be addressed.

